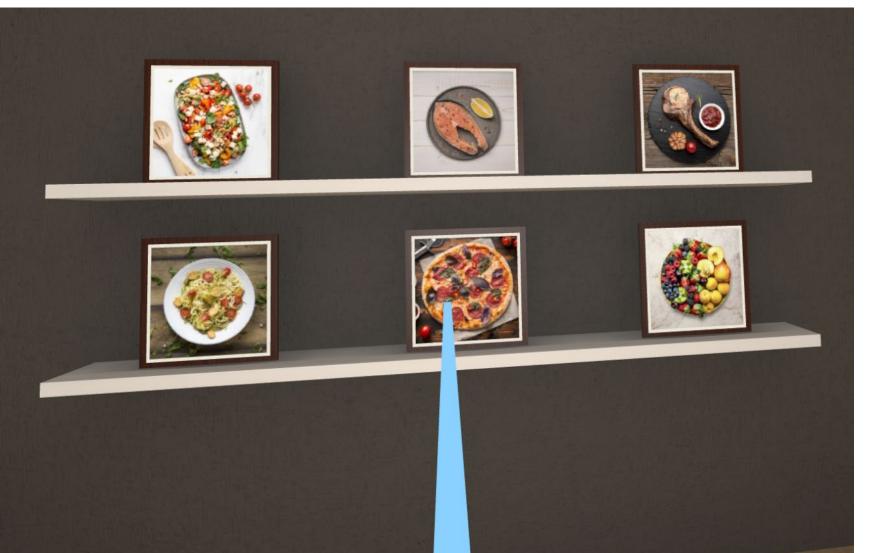


An XR eye-tracking investigation on the assessment of existing food habits

N.D. Tantaroudas, G.Karafotias, K. Koukoudis, G. Tsimiklis, A. Amditis, and T. Katika Institute of Communication and Computer Systems (ICCS), Athens, Greece nikolaos.tantaroudas@iccs.gr


Introduction and Related Work

Food systems contribute to at least 30% of global anthropogenic greenhouse gas (GHG) emissions annually [1]. To effectively lower these emissions, it is essential to understand individuals' food habits. Conventional approaches, such as food diaries and questionnaires, are commonly used but often introduce biases and do not effectively capture the complexities of individuals' food choices [2]. Recent advancements in XR technologies, such as virtual reality (VR), augmented reality (AR), and mixed reality (MR), have revolutionized food selection studies by allowing controlled experiments to take place in highly realistic virtual settings [3]. These technologies, particularly when combined with eye-tracking metrics, offer more objective insights into individuals' cognitive and emotional responses to food [4]. This investigation addresses existing gaps of XR studies on sustainable practices by combining traditional questionnaires with XR eye-tracking. It creates immersive scenarios to better understand diverse food choices and allows for rapid adjustments, offering deeper insights into how various factors shape food preferences.

Demonstration

Immersive Virtual Reality (VR) content was developed to analyze correlations between participants' eye-gazes and factors affecting food choices (Fig. 3). User interactions, such as eye tracking, clicks, and gaze duration, were meticulously tracked in the VR

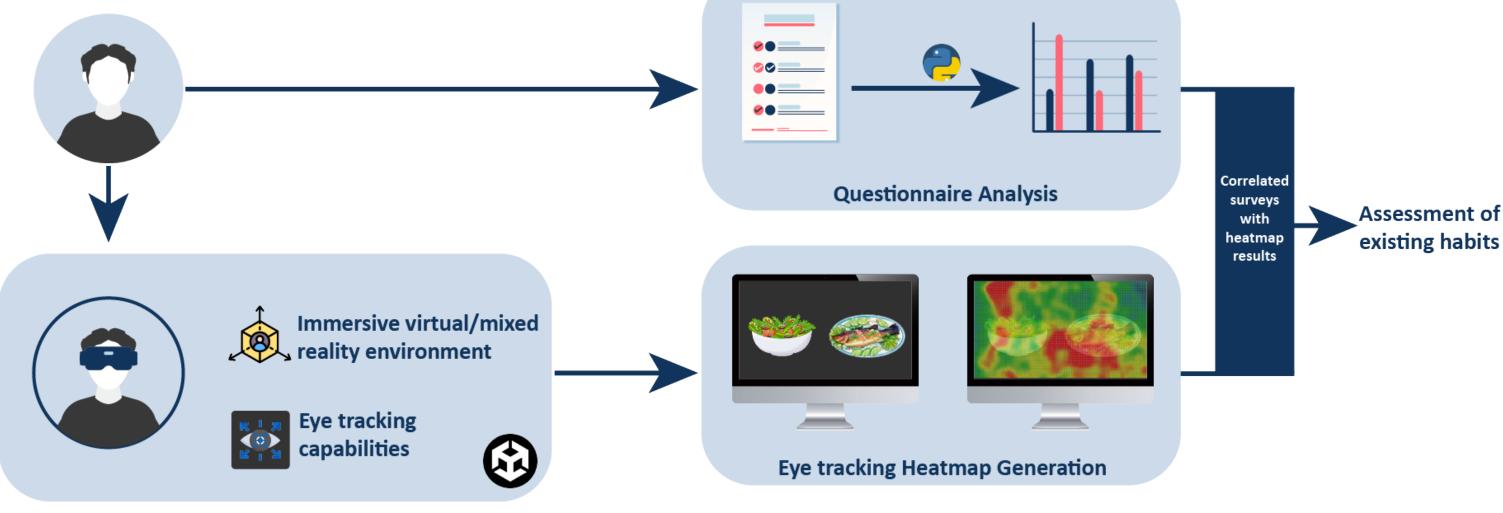
Figure 3. VR Environment Setting and food scenarios

Methodology

This study leverages eye-tracking analysis in virtual reality (VR) to evaluate participant engagement by focusing on key metrics such as gaze direction, duration, and fixation frequency. By refining thresholds for gaze duration, the study differentiates between brief glances and significant interactions. Utilizing XR hardware and the OpenXR framework, participants engage with virtual food items in an VR setting while their gaze behaviors are tracked. Gaze points, durations, and fixation locations are visualized using heatmaps, and quaternion rotation data is converted to Euler coordinates for more accurate analysis of gaze direction.

Experimental Setup

The flowchart (Fig. 1) outlines the methodology used to investigate the connection between visual attention and dietary choices. In a VR environment, participants' food preferences are evaluated as various virtual food options are presented on a table in an immersive 3D format. This setup is specifically designed for eye-tracking research, allowing for detailed observation of interactions with different food items. Eye-tracking data is gathered through Unity and the Oculus OVR Eye Gaze component, capturing participants' gaze interactions with virtual foods. The system records gaze fixations and processes key metrics like direction, duration, and fixation points, which are then analyzed alongside questionnaire responses to better understand food preferences. The results are visualized using 3D heatmaps to identify high-interest areas, revealing which food items draw the most attention.


setting.

preferences.

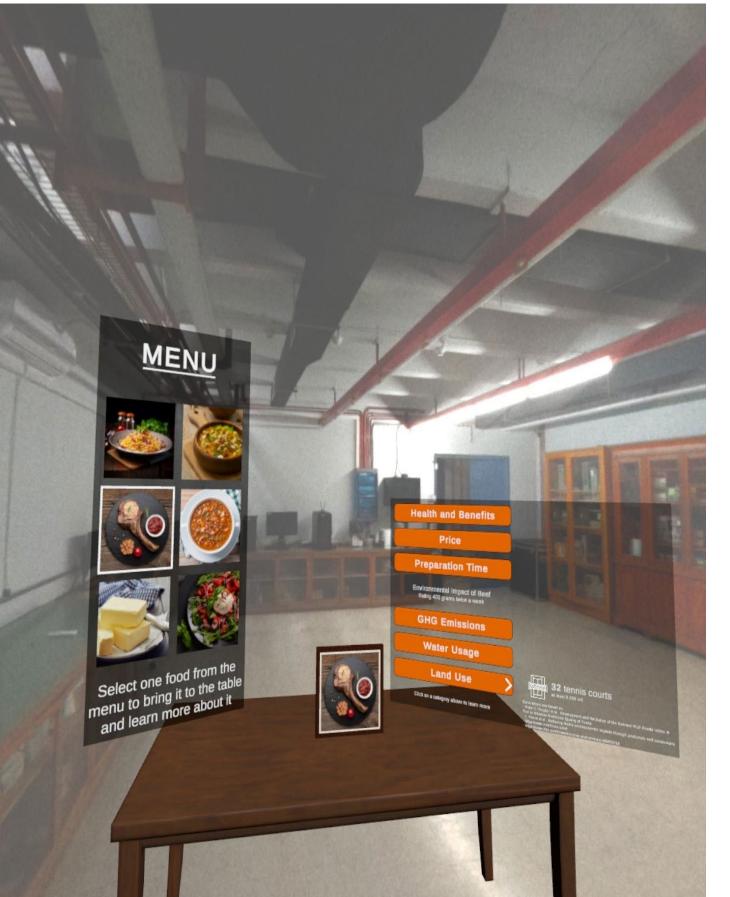
Table 2. Results of Number of Gazes, Total, Max,and Average Gaze Duration per Food Scenario at asampling ratio of f = 50 Hz and minimum gazefixation > 0.15 s

Group	Scenario	Count	Total Gaze (s)	Avg (s)	Max (s)	Table 2 magazeta the same meating for
Vegetarian	Fish	13	9.59	0.74	2.44	Table 2 presents the gaze metrics for
	Pasta	14	10.56	0.75	1.68	participants with different dietary
	Pizza	15	10.06	0.67	2.44	
	Steak	8	3.48	0.44	0.74	preferences (vegetarian, omnivorous, and
	Fruits	11	10.34	0.94	0.74	carnivorous) across various food
2	Salad	18	16.17	0.9	2.34	carnivorous) across various food
Omnivorous	Fish	10	4.00	0.40	0.88	scenarios. Vegetarians spent more time
	Pasta	2	1.08	0.54	0.58	
	Pizza	8	4.12	0.52	1.04	focusing on sustainable food options, such
	Steak	11	11.96	1.087	3.32	as salad and fruits, with the highest total
	Fruits	7	4.58	0.65	1.88	as salad and muns, with the ingliest total
	Salad	3	2.02	0.67	0.90	gaze times recorded for these items.
Carnivorous	Fish	5	1.94	0.39	0.78	
	Pasta	13	13.28	1.02	4.48	Carnivorous participants, by contrast,
	Pizza	12	24.84	2.07	9.50	showed a strong preference for meat-
	Steak	5	12.48	2.50	6.28	
	Fruits	6	3.96	0.66	1.34	based scenarios, spending more time on
	Salad	3	2.22	0.74	1.56	
		4 - 1	41 41 V/F			steak and pizza, reflecting their dietary habits. Omnivorous participants displayed
Heatmaps	genera	tea wi	thin the VR	c envire	onment	habits Omnivorous narticinants displayed
(Fig. 4)	for	an	carnivorous	s nart	icinant	naons. Ommotous participants displayed
· · · · · · · · · · · · · · · · · · ·	101	WII				a more balanced engagement across both
highlighte	d are	as o	f concent	rated	visual	
ottontion	offoning		hta into ind	in dual		plant-based and meat options.
allention,	onering	g insig	tts into ind	Ividual	l visual	
engageme	nt wit	th sn	ecific foo	d sce	enarios	Figure 4. Left: Visual attention heatmaps generated
		_				within the VR environment for carnivorous participant
highlights	how th	e VR	environmer	it succe	essfully	Right : 2D heatmaps analysis for carnivorous participant
aligns use					•	Right. 2D heatmaps analysis for earnivorous participant
ATIONS INCE			+ +++++++++++++++++++++++++++++++++++++		d101011	

Gaze Heatmap Carnivorous

Figure 1. Extended Reality-Based Behavioral Analysis Flowchart: Identifying Dietary Choices through Eye-Tracking, Heatmaps and Data Analysis

Assessment of Participants


The	study	surve	yed	114	particip	ants,
	ling di					
notab	le diffe	rences	in g	gender,	BMI,	and
veget	arians,	and ve	egans.	The	carnivo	rous
<u>0</u> *011*	had m	oro m		and his	than ah	ocity

200 1 2 1 2	categori	es	121220020020	
Category	Vegetarians	Omnivorous	Carnivorous	
Age Groups	had seen	10000		
18-24	28.57%	6.25%	0%	
25-34	14.29%	23.96%	14.29%	
35-44	28.57%	56.25%	57.14%	
45-54	0%	7.29%	0%	
55-64	0%	3.13%	14.29%	
65+	28.57%	3.13%	14.29%	
Gender	Sector and	sour less	and a state of	
Male	28.57%	37.5%	71.43%	
Female	71.43%	60.42%	28.57%	
Non-binary	0%	2.08%	0%	
Prefer not to say	0%	2.08%	0%	
BMI				
Underweight	0%	2.08%	0%	
Normal Weight	57.14%	63.54%	28.57%	
Overweight	42.86%	28.13%	71.43%	
Obese	0%	6.25%	0%	
Environmental Impact				
Very Low	0%	13.54%	14.29%	
Low	0%	17.71%	28.57%	
Moderate	42.86%	46.88%	42.86%	
High	42.86%	19.79%	14.29%	
Very High	14.29%	2.08%	0%	
Health Concerns	1632	145 550	In the second	
Very Low	0%	4.12%	0%	
Low	0%	7.22%	42.86%	
Moderate	57.14%	38.14%	42.86%	
High	28.57%	42.27%	14.29%	
Very High	14.29%	8.25%	0%	
Ethical Concerns				
Yes	71.43%	27.08%	0%	
No	28.57%	72.92%	100%	

Conclusion and future studies

The VR environment analysis confirmed that participants with sustainable dietary habits spent more time engaging with images of sustainable food, whereas those with a preference for meat gravitated toward meatbased scenarios. The true potential of this tool lies in its ability to uncover deeper behavioral insights. Future research will investigate additional factors like selection patterns and physiological responses (such as pupil dilation and heart rate) to further enhance the XR tool's functionality. Expanding on these findings, upcoming studies will create new MR scenarios through projected experiences addressing a wider spectrum of consumer behaviors, including those related to the circular economy and climate resilience (Fig 5), aiming to collect data on how targeted campaigns can effectively drive a shift towards sustainability, ultimately supporting societal acceptance and the success of policies that encourage sustainable practices.

group had more males and higher obesity rates, highlighting gender and cultural influences, as well as the benefits of plantbased diets. Table I provides a brief overview of food choices of diverse demographic clusters. Additionally, taste came out as the top factor for individuals when selecting food, followed by health, cost, convenience, and freshness (Fig. 2).

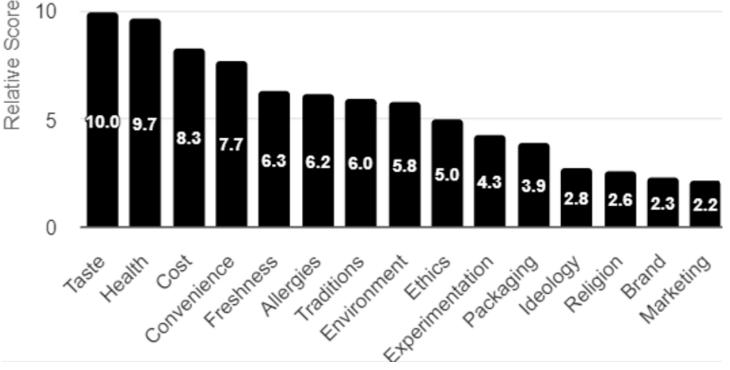
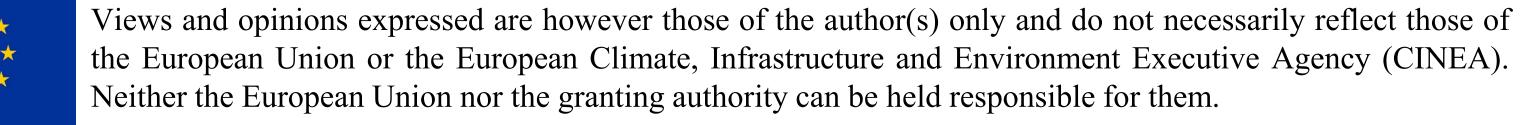



Figure 2. Key Factors affecting food habits of dietary groups

Figure 5. Mixed Reality Environment Setting with Data Storytelling Visuals

References:

- 1. M.Crippa, E. Solazzo, D. Guizzardi, F.Monforti-Ferrario, F.N. Tubiello, and A. Leip, Food systems are responsible for a third of global anthropogenic GHG emissions, Nature Food, 2, 198-209 (2021), SN-2662-1355, <u>https://doi.org/10.1038/s43016-021-00225-9</u>
- 2. Svendsen M, Tonstad S. Accuracy of food intake reporting in obese subjects with metabolic risk factors. Br J Nutr. 2006 Mar;95(3):640-9. doi: 10.1079/bjn20051662. PMID: 16512951
- Manzoni, G. M., Cesa, G. L., Bacchetta, M., Castelnuovo, G., Conti, S., Gaggioli, A., and Riva, G. (2016). Virtual Reality-Enhanced Cognitive-Behavioral Therapy for Morbid Obesity: A Randomized Controlled Study with 1 Year FollowUp. Cyberpsychology, Behavior, and Social Networking, 19(2), 134-140. <u>https://doi.org/10.1089/cyber.2015.0208</u>
- 4. Ruppenthal, T. (2023). Eye-Tracking Studies on Sustainable Food Consumption: A Systematic Literature Review. Sustainability. https://doi.org/10.3390/su152316434

